Repair Mechanisms in Articular Cartilage—A Porcine in Vitro Study
نویسندگان
چکیده
Explants are excellent systems for studying homeostasis in cartilage. The systems are very useful in pharmacological studies involving OA-treatment and in studies of repair mechanisms during injury to hyaline cartilage. The purpose of this study was to evaluate the reparative processes occurring in a young age porcine cartilage explant model examining tissue by Light (LM) and Transmission Electron Microscopy (TEM). Explants of articular cartilage were dissected from the femoral condyles of immature one-year-old pigs and cultured in DMEM/F12 medium with FCS (stimulated explant) or in medium without FCS (control explant) for up to 4 weeks. After 1 4 weeks of culture with FCS, LM showed migration and proliferation of chondrocytes in cartilage close to the injured surface differentiating two areas: proliferative zone and necrotic zone. The chondrocytes present in the necrotic zone showed a polarization towards the injured surface. After budding through the injured surface, the chondrocytes formed repair tissue in an interface repair zone and in outer repair tissue. TEM showed chondrocytes in expanded lacunae involving the proliferative zone. The pericellular matrix of the expanded lacunae was partly dissolved, indicating release of matrix-degrading enzymes during proliferation and remodeling. Migratory chondrocytes were identified in oval lacunae close to the injured surface. The pericellular matrix of these oval lacunae was significantly dissolved and immunohistochemistry demonstrated strong staining with a polyclonale collagenase antibody around these units, suggesting release of matrix-degrading collagenase contributing to chondrocyte mobility. We describe an explant model comprising two different repair systems in immature articular cartilage. This model provides us with new reference points that are important in understanding the repair mechanisms.
منابع مشابه
Experimental Study on Protective Role of NSAID on Articular Cartilage Destruction in Septic Arthritis
Background: Surgical drainage and antibiotic therapy are the cornerstones of treatment protocols in septic arthritis; however, in some circumstances, the diagnosis and initiation of treatment may be retarded by slow disease progression or the time when the patient’s condition precludes early surgery. Therefore, it is beneficial to find ways to reduce the amount of articular injury. This study a...
متن کاملConditioned medium derived from mesenchymal Stem cells regenerates’ defected articular cartilage
Background & Aims: One of cell- based technical issues associated with cartilage repair assay is delivering cells to the site of the parts where damage is created. Mesenchymal stem cells (MSCs) with their chondrogenic potential are ideal candidates for cartilage regeneration. High expression of cartilage hypertrophy markers by MSCs would result in apoptosis and ossification. This investigation ...
متن کاملTissue engineering-based cartilage repair with allogenous chondrocytes and gelatin-chondroitin-hyaluronan tri-copolymer scaffold: a porcine model assessed at 18, 24, and 36 weeks.
We previously showed that cartilage tissue can be engineered in vitro with porcine chondrocytes and gelatin/chondoitin-6-sulfate/hyaluronan tri-copolymer which mimic natural cartilage matrix for use as a scaffold. In this animal study, 15 miniature pigs were used in a randomized control study to compare tissue engineering with allogenous chondrocytes, autogenous osteochondral (OC) transplantati...
متن کاملEvaluation of CD98 Expression in Normal and Osteoarthritic Human Articular Chondrocytes
Background: Recent studies have provided evidence that integrins play roles in recognition of mechanical stimuli and its translation into a cellular response. Integrin signaling may be regulated by a number of mechanisms including accessory proteins such as CD98 (4F2 antigen). Objectives: To determine CD98 expression by human articular chondrocytes and its involvement in human articular mechano...
متن کاملMesenchymal stem cells can survive on the extracellular matrix-derived decellularized bovine articular cartilage scaffold
Objective (s): The scarcity of articular cartilage defect to repair due to absence of blood vessels and tissue engineering is one of the promising approaches for cartilage regeneration. The objective of this study was to prepare an extracellular matrix derived decellularized bovine articular cartilage scaffold and investigate its interactions with seeded rat bone marrow mesenchymal stem cells (...
متن کامل